A Discriminating Feature Tracker for Vision-Based Autonomous Driving

Henry Schneiderman and Marilyn Nashman

National Institute of Standards and Technology
Robot Systems Division
Building 220, Room B127
Gaithersburg, MD 20899
e-mail: hws@cme.nist.gov, nashman@cme.nist. gov

ABSTRACT

A new vision-based technique for autonomous driving is
described. This approach explicitly addresses and compen-
sates for two forms of unceriainty: uncertainty about
changes in road direction and uncertainty in the measire-
ments of the road derived in eqch image. Autonomous driv-
ing has been demonstrated on both local roads and high-
ways at speeds up to 100 kmvh. The aigorithm has per-
formed well in the presence of non-ideal road conditions
including gaps in the lane markers, sharp curves, shadows,
cracks in the pavement, and wet roads. It has also per-
formed well in rain, dusk, and nighttime driving with head-
lights.

1. Introduction

Feature tracking algorithms developed for autonomous
driving [1] do not satisfactorily address the issue of model-
ling and compensating for uncertainty in their measure-
ments, In particular, they overlook the fact that road visibil-
ity can vary from image to image. For example, there will
be images in which the lane markers are clearly visible and
others in which they are less visible, obscured, or absent
(see Figure 1 and Figure 2). Qur approach explicitly ad-
dresses uncertainty of two forms. The first is the uncertain-
ty about how quickly the road changes as a function of time
(assuming a nominally constant speed). The second is un-
certainty in the visibility of the lane markers in each indi-
vidual image. Both contributions of uncertainty are formu-
lated into a criterion of optimality for the estimate of the
lane marker models. This criterion is satistied by a weight-
ed recursive least squares (WRLS) with exponential decay
estimator, Using this method, the road following algorithm
achieves robust behavior in the presence of small gaps in
the lane markers and momentary loss in visibility of lane
markers. The algorithm also performs well in the presence
of other non-ideal conditions such as sharp curves, shad-
ows, cracks in the pavement, wet roads, rain, dusk, and
nighttime driving.

2. Lane marKer tracking algorithm

This algorithm requires that iane markings be present
and attempts to track the lane markings on each of two lane
boundaries in the lane of travel. There are three successive
stages of computation (also see Figure 1)

1) Edge extraction - Extracting edge point position and
orientation.

2) Data association - Determining likely groupings of
edge points to each lane marker.

3) Model update - Updating the lane marker models.

This sequence of operations is repeated for each new
image. Video imagery from a camera mounted above the
cab of the vehicle provides the input to Stage (1). Stages (2)
and (3) interact with geometric models of each kane marker.
Stage (2) attempts to group the extracted edge points ob-
tained from stage (1) with cach lane marker by comparing
each edge point against the current models. Stage (3) then
updates the models using those edge points that have been
grouped to cach lane marker.

Section 2.1 describes the geometric representation of
the lane markers. Section 2.2 describes how the model is
initialized to a road scene. Section 2.3 describes the edge
extraction algorithm (stage 1), Section 2.4 describes the
data association algorithm (stage 2). Section 2.5 describes
the method for updating the lane marker models (stage 3).

Figure 1. Lane markers
are clearly visible

Figure 2. Gap in
lane markers
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Figure 3. Processing overview

2.1. Representation of the lane markers

All representations are maintained in 2D with respect to
the image plane throughout all computations in this algo-
rithm, Both the left and right lane markings in the lane of
travel are modeled. These markings correspond to the
white or yellow lines painted on the road. These lines are
either solid or striped (see Figure 4).

Each of these lane boundaries is modeled by a second
order polynomial in the image plane:

X = a,+ayy+dpy? )

The parameters, dy, dz, @3, govern the shape and position of
the lane marker model. The endpoints of each lane marker
model are given by the intersection of the model equation
with the boundary of the window of interest {see section
2.4).

A second order model was chosen because it provides
an adequate representation of shape within the constraints
of real-time performance required for the autonomous driv-
ing problem.

2.2. Initial conditions

The algorithm requires an initially approximate model
of the lane markers before tracking can begin. This initial
correspondence between the road markings and the models
of the road markings is established by a teleoperator. The
teleoperator manually positicns the models to align them
with the appearance of the lane markers in the image.

2.3. Edge extraction

In the first processing siep, edge extraction is performed

Figure 4. Lane marker models

on each image (stage (1) in Figure 1}. For every point in the
image, edge magnitude and edge orientation are computed
using a two-dimensional 3 X 3 spatial Sobel operator. A bi-
nary edge image is produced by thresholding the edge
points in magnitude. Figure 5 shows a typical image of a
road viewed from a camera mounted on a vehicle. The
thresholded edges in this image are shown in Figure 6.

2.4. Data association

The raw edges in each image are produced by various
visual entities including lane markers, shadows, pot holes,
cracks, and other vehicles. A data association algorithm
(stage (2) in Figure 1) is used to determine which of these
raw edge points are likely to be associated with each lane
marker and to discard those edges that do not seem to be as-
sociated with either lane marker.

The data algorithm compares each edge pixel to the cur-
rent model of each lane marker. An edge pixel must satisfy
two criteria to be associated with a lane marker. The first
criterion is two-dimensional spatial proximity of the edge
point to the model, The second criterion is similarity of di-
rection of the edge point with the angular orientation of the
model.

In each image, many edges can be discarded immediate-
ly on the basis of the spatial proximity criterion. This is
done by eliminating all edges that fall outside a window of
interest. This eliminates many, but not all edges that violate
the spatial proximity criterion. Figure 7 represents the re-
sults of masking the thresholded edge image with the win-
dow of interest.

For all edge points falling within the window of interest,
the two data association criteria are applied on a point by
point basis. First, the data association procedure compares
the edge direction of each candidate edge point with the an-
gular direction of the model. When this angular criterion is
satisfied, the distance d is computed between the edge point
and the model. If this distance is less than the pre-specified
threshold, the edge point is associated to that lane marker,
Figure 8 shows the thresholded edges extracted from the
original image that are grouped to the right lane marker, (In
Figure 8, edges forming the right lane marker do not appear
as continuous as they do in Figure 7, This is due to sam-
pling of the edge image).
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Figure 6. Thresholded
edge image

Figure 5. Original image

Figure 7. Edges within
window of interest

Figure 8. Edges grouped
to right lane marker.

Figure 9. Computed lane markers
graphically superimposed on image

2.5. Lane marker model update

Using the associated edge points, each of the two
polynomial lane marker models is updated independent-
ly {except for a case described in 2.5.7). Several princi-
ples are followed to obtain robust lane marker updates.
Section 2.5.1 describes how an estimate improves with
more data. In updating the lane marker models, two types
of uncertainty are addressed. There is uncertainty in how
quickly the road changes as a function of time (2.5.2) and
there is uncertainty in the visibility of the lane markers in
each image (2.5.3). These factors are formulated into a
criterion of optimality for the lane marker estimate
(2.5.4). This criterion of optimality is satisfied by a
weighted recursive least squares (WRLS) with exponen-
tial decay estimator (2.5.5). The WRLS with exponential
decay solution is compared to the Kalman filter solution
(2.5.6). In 2.5.7 some additional constraints between the
lane markers are discussed.

2.5.1. More data improve the estimate

In general, an estimate can be improved by using
more data. It can be shown that if a measurement consists
of a sum of a stationary signal and unbiased noise, the es-

timate of the signal will improve — the variance in the
estimate will decrease — as more measurements are av-
eraged [10], {11], [12].

To obtain the best possible estimate from each image,
it is important to make use of all visible portions of the
lane markers. Valuable information is wasted if visible
portions of the lane markers are partially masked out as
is done by Y ARF [8][9].

An egstimate can be further improved by using data
from multiple images in a sequence. This is particularly,
important for lane marker sensing where the edge data
from any one image may be too weak or contaminated by
incorrect data associations.

However, as mentioned above, in order to improve an
estimate by using more data, measurement noise must he
unbiased. In lane marker tracking this assumption is fair-
ly viable due to a combination of two phenomena. First,
the immediate surroundings of the lane markers (as
viewed in the image) are constantly changing because of
the motion of the vehicle. Secondly, any surrounding
spurious edge points, ¢.g., shadows and cracks in the
pavement, are not inherently biased to either side of the
lane markers.

2.5.2. Uncertainty in road change

The lane markers are not strictly stationary signals
across successive images, However, they change rela-
tively slowly assuming a nominal vehicle speed. There-
fore, a compromise must be mediated between robust-
ness of the estimate — by using data over a large tempo-
ral span — and responsiveness to actual changes in the
ane markers — by using data over a smaller temporal
span. This compromise is achieved by the relative
weighting of new data with respect to older data in the es-
timate.

This relative weighting between new data and old
data may be simply governed by an exponential decay
factor where the weight contributed by the exponential
decay, A, for each edge point is:

kﬁm (2)

0.0<A<1.0
¢is the current time:
ter is the time the image was sampled

For example, if A = 0.5, all edge points in the current im-
age, fo= {, have a weight of 1.0. All edge points in the im-
age read at lime fo = ¢ - | have a weight of 0.5, etc. Val-
ues of A anywhere in the range 0.5 < A < (.75 produced
acceptable tracking.

2.5.3. Uncertainty in lane marker visibility

In each image, lane marker visibility is measured by
the number of edge points matched to the lane marker
model. This measure of visibility acts as an additional



weight when edge data are combined temporally in an esti-
mate, Figure 10, shows images sampled trom a sequence in
which there are gaps in both lane markers. Figure 11 and
Figure 12 graph the number of points matched to the lane
markers during this interval of time. Not surprisingly, the
number of matched points drops during the gap. These im-
ages will therefore carry relatively less weight in the esti-
mates and do not greatly perturb the estimated lane marker
models.

The measure described above is limited in that it only
measures the visibility of the lane markers. Ideally, a
broader measure of confidence is desirable. Such a measure
of confidence should alse penalize for the presence of clut-
ter such as shadow edge points mistakenly grouped to the
lane markers. One potential measure of clutter is the vari-
ance about the estimated function x = a; +a,y + agyzz

N
ot = %12 [xi_(al+a2yi+a3yi2)]2 3)
i=1
N - Number of matched edges points.,

A higher variance indicates a more scattered distribution
of edge points. This usually indicates the presence of spu-
rious edge points. Confidence could then be computed as
an inverse function of variance as in [14][15]. However, in
[14][15]} the detected features were edges corresponding o
only one light-to-dark transition. Unfortunately, lane mark-
ers give rise to 2 spatially distinct edges for single stripes
and 4 for double stripes. There are also edges caused by the
boundary between the pavement and the shoulder. Since
there is spatial spread inherent in the sensed lane marker, a
high variance in its location does not necessarily indicate
the presence of clutter.

2.5.4. Criterion of optimality

In updating a lane marker model, the two contributions
of uncertainty are directly formulated into a criterion of op-
timality, Jp:

!

N,
Jp = Z{RP" 2 [xj’l.—(al +“2yj.i+a3y,?.i)]2) (4)

j=0 i=1

This represents the residual least squares error as weighted
by the uncertainty measures. By computing «;, ay, a3 such
that /5 is minimized, these uncertainties are minimized in
the least squares sense in the estimate.

Expanding the outer summation in equation (4} in re-
verse order gives:

i=1

¢ - Current time

N, - Number of matched edges points in image ¢
Each summation in (5) represents the edge points from one
image grouped to the lane marker. The weight measuring
image visibility is implicitly included; that is, each summa-
tion is over the number of edge points matched to the lane
marker for that image, N, points. An image in which many
edge points are matched will therefore contribute more
terms to the residual and thereby carry more influence in
the determination of «;, a,, ¢;. The exponential decay is
achieved by multiplying each summation by a power of A
where older images are multipiied by increasing powers of

A

2.5.5. Weighted recursive least squares with exponen-
tial decay solution

For each new image, a;, ¢, ¢3 must be recomputed for
each lane marker model such that /5 is minimized. Except-
ing pathological cases, a unique solution for ay, ay, a3 ex-
ists. This solution can be recurstvely formulated. In the re-
cursive formulation, the current solution for a;, ¢y, @5 is
called the state. When a set of edge points from a new im-
age is acquired, the state is recomputed using only this new
data explicitly. All past data are completely represented by
the previous state and the estimated covariance in the pre--
vious state. This update conststs of three successive com-
putations [16};

Update prediction
500 =67 (-1 (6)

Update state estimate

8(1) = 8(t=1) +P-Dd (0 [y(t) -§(1)]

M
[1+oT(MP-1o(m]™
Update state covariance estimate
P = 1 (P-1 - [PA-DOWETOPT (- 1)
()

[T+eT(HP(t-Do(]!)



Figure 10. Images sampled from a sequence in which there is a gap in the lane markers. Lane marker models are
graphically superimposed.

where
2
1 Uy v
. T , 1 2
y(') = L2 o (1) = Y2 Yin
x
1N, 1 YN, y%Nl
a, This represents the state esti-
B(t_1) = mate attime=t-1,and P (t -
A 1) represents an estimate of

a, its covanance.

This computation is known as weighted recursive least
squares (WRLS) with exponential decay [16].

Although equations (6), (7}, (8) compute the solution
that minimizes J in equation {4}, an equivalent algorithm,
the square root information filter (SRIF) algorithm [17], is
used in practice. The SRIF is also recursive but has much
less sensitivity to finite precision round-off error and is also
less computationally demanding than equations (6), (7),

(8).

2.5.6. Comparison between Kalman filter and WRLS
with exponential decay

For the purposes of the Kalman filter, the system can
also be modelled by the following state space model:

State transition equation
B(t) = 8(t-1) +v(1) 9

Measurement equation

¥(O = 0T()B(t-1) +w (D) {(10)

6(0), &{t), y(t) are defined above

v (1) and w (t) are additive noise
This represents a stationary signal with a drift, v(¢), The co-
variance of the drift represents uncertainty in the rate of
change in the lane markers, These equations will be the ba-
sis of the Kalman filter discussion to follow. However, to
incorporate vehicle motion into this formulation, the state
equatton could have been expressed as:

B(t) = AB(t-1) +v (D) (11)
Where A, the 3x3 state transiion matrix, represents the
known change in state that occurs each cycle. In autono-
mous driving, the vehicle motion affects the state in a
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Figure 11. Number of points grouped to left lane marker
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Figure 12. Number of points grouped to right lane
marker during image sequence




known manner and such knowledge could be conceivably
linearized and expressed in A, In the VaMoRs system
[2131E41151161[7], vehicle motion was formulated into the
model update in this way, However, this method departed
from the classical Kalman filter in its interpretation of A. A
was chosen as a function of the state itself making the state
update non-linear, sub-optimal and possibly unstable.

The Kalman filter provides the minimum variance linear
estimate of the state (equations (8) and (9)) when v(¢} and
w('t) are white unbiased Gaussian noise.

The Kalman filter solution is similar to that given by
WRLS with exponential decay. In the Kalman filter solu-
tion, the update of the prediction and the update of the state
are identical 1o those for WRLS with exponential decay as
given by equations (6) and (7). However, the Kalman up-
date of the state covariance differs and is given by:

P() = P(-1) - [PU-16MoTMPT(t-1)]

12
(R, (0 +6TWPE-DO] +R 0

R, (1) and R, (1) are the covariances of v(t) and w(t} in
equation {10) respectively.

In both algorithms, the state covariance, P (t), serves the
same functionality. In the state update (equation (7)), the
state covariance behaves as a gain that multiplies the error
between the model and the current measurement,
[y (t) =¥ ()] . Therefore alarge state covariance (i.e. large
gigenvalues) means there is more uncertainty in the current
estimate and consequently the state estimate will be more
responsive to the error. Conversely, a smaller state covari-
ance means there is more certainty in the current estimate
and the state estimate will be less responsive to the error.

Both algorithms seek 0 maintain the size of the covari-
ance such that a desirable trade-off is achieved between re-
sponsiveness to changes in the state and robustness in the
presence of noise. However, they differ in the mechanism
by which this covariance adjustment is achieved. In the
Kalman filter, covariance size management is achieved
through the relative choices of the terms R ;{¢) and R»(¢) in
equation (12) (the covariances of v(t} and w(¢) in equation
(10), respectively). In the WRLS with exponential decay,
covariance size management is achieved through the
choice of A.

The problem faced in implementing the Kalman filter
for this application is in deriving physically accurate mod-
els for the covariances R;(r} and R(z). Considering R;(1)
first, Ry(z) is the covariance in the state equation, equation
(10). In less precise terms, R j(t} represents prior knowledge
in how much the road is expected to change and specifical-
ly how these changes affect the uncertainty in each state pa-
rameter. Ro(t} represents the amount of uncertainty in the

measurement such as that caused by visibility and clutter as
discussed in 2.5.3. In particular, R,{t) accounts for the un-
certainty in each individual edge point and the correlations
in uncertainty among all edge points.

In the VaMoRs systern [2][3]{4][5][6]1[7], a Kalman fil-
ter like formulation is used for road tollowing, but none of
these publications mention how the covariances R (1) and
Ry(1) are physically derived or which values are used for
these covariances. Such an omission seems serious in that
the behavior of the algorithm is largely governed by these
choices. Moreover, the whole question of uncertainty med-
eling is left unanswered.

2.5.7. Road width constraint

If sufficient data are matched to both lane markers, the
two lane markers are treated independently. However, a
road width constraint is used when the lane marker data are
sparse for one¢ lane marker and strong for the other lane
marker. This constraint is designed to handle the situation
where one lane marker momentarily disappears. Currently
a road width constraint is applied when the number of edge
points associated to the weaker lane marker is under a pre-
defined threshold and the stronger lane marker exceeds the
threshold, The threshold is currently set to 40 points.

Road width is modeled as a first order polynomial in the
image plane:

X =a, +a
w 1w 72

WY (13)
Each coefficient of this polynomial is computed from the
difference of the corresponding coetficients of the two lane
marker models. This difference is then averaged over time
with exponential decay. For example, for the first coeffi-

cient this gives:

alRU) _dlL(j) +N“1 -0
F (14)

alw(j) =

j - Time at which image was sampled

N - Decay factor, currently N=20
These coefficients are recomputed for each new image.

The road width constraint involves using the road width
model to compute a synthetic lane marker model by adding
this offset to the location of the other lane marker model.
The synthetic lane marker model is then weighted and com-
bined into the lane marker model update for that lane mark-
er, The weight this synthetic lane marker carries is a func-
tion of the number of edge points associated to lane marker
versus the number of points associated to the other lane
marker.



3. Evaluation of algorithm

Actual autonomous driving experiments require a com-
plete autonomous navigation system which include a per-
ception system, a steering/control system, and a robotic ve-
hicle. Such a system has been developed at the National In-
stitute of Standards and Technology (NIST) using an Army
High Mobility Multipurpose Wheeled Vehicle (HM-
MWV}, The HMMWY and steering/control system are de-
scribed in [22] and [23].

3.1. Testing

It is very difficult 1o objectively measure autonomous
driving performance. One possible measure might be the
centering of the vehicle between the lane markings. A
method for performing this measurement is currently under
development at NIST [24]. However, in objectively com-
paring different systems and techniques using such a meth-
od, testing must be performed on the same roads under the
same environmental conditions (e.g., angle of sun, cloud
cover, eic.). Therefore, to compare the algorithm described
in this paper with other similar algorithms would require
duplication of the computational systems these other algo-
rithms use. These computer systems often use custom or
special purpose real-time computational hardware that is
not readily available. For example, the VaMoRs system de-
scribed in [2][3]1[41[51[6][7] uses a customized transputer
network.

Since objective measures of performance are not cur-
rently feasible, a subjective description of this system’s
performance can be provided. Autonomous driving exper-
iments using the NIST HMMWYV have been performed on
several roads including the NIST campus, Great Seneca
Highway in Gaithersburg, Maryland, and Montgomery
County Police Test track in Rockville, Maryland. These
roads contained standard lane markings such as double yel-
low lines, single white Hnes, and dashed white lines. On all
these roads the algorithm performed quite successfully and
reliably. The only failure occurred on one portion of road
where the pavement abruptly changed from dark asphalt to
light cement for an overpass. The lane markings did not
provide enough contrast to be detected on the cement pave-
ment. Otherwise, the vehicle maintained centering in the
lane of travel. It was able to successfully traverse sections
in which there were significant gaps of 6 - 7 meters in the
lane marking for small intersections and through an under-
pass. The roads were moderately shadowed by surrounding
trees and varied from mild curvature and hills to severe ris-
es and drops and sharp curves on the Montgomery Police
test track. Pavement quality varied significantly, including
stretches of old pavement with many cracks and discolora-
tions. Top speeds of 100 km/h were also demonstrated. On

alt roads the vehicle was able to travel at the legal speed
fimit. Testing also included a wide variety of conditions in-
cluding rain {(wet roads}), night time¢ driving with head-
lights, and driving at dusk into the sunlight.

The algorithm has also been widely tested using video
taped road scenes. Tracking was maintained on video tapes
of roads with sharp curves, hills and moderate shadows.
However, on one portion of video taped road, tracking was
temporarily lost when the vehicle travelled through a
sharply curved hilly portion of road that was shadowed by
a heavily wooded area. Tracking was maintained in typical
traffic situations: on-coming traffic, passing vehicles, and
traveling behind other vehicles.

3.2. Timing

The update rate of the system is 15 Hz and the worst
case computationat delay (between image capture and
compuiation of steering) is 150 milliseconds {ms), Edge
extraction required 66,7 ms.The number of edge points ex-
tracted varies from scene to scene and consequently the
processing times for the algorithms in stages (2) and (3)
(Figure 1) vary depending on the number of data points
present. For a representative road scene containing approx-
imately 300 edge points, the edge matching is performed in
21 ms and the road model update is performed in 51 ms.
The steering process [22][23] requires less than 1 ms com-
putation time,

4, Conclusion and future work

An algorithm has been described that robustly tracks
road lane markers. It is assumed that the lane markers are
visible with either solid, double, or dashed Lines. All visual
processing is done in two dimensional image coordinates.
Processing is performed in sequential stages: extracting
edges, associating edge points to the lane markers, and up-
dating models of the lane markers. Uncertainty in the visi-
bility of the lane markers and uncertainty in the change of
the road are modelled and incorporated into a weighted re-
cursive least squares with exponential decay estimate used
to update the lane marker models. The system update rate
is 15 Hz. _

Although this system performed very well, it can only
be considered a first step in autonomous driving. The chal-
lenge in future work is to develop algorithms of increasing
reliability and 1o strive toward the goal of robustness under
all possible driving conditions.
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